Recent developments in 3-D reconstruction and stereology to study the pulmonary vasculature

Author:

Mühlfeld Christian123,Wrede Christoph123,Knudsen Lars123,Buchacker Tobias1,Ochs Matthias123,Grothausmann Roman123

Affiliation:

1. Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany

2. Cluster of Excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy), Hannover, Germany

3. Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany

Abstract

Alterations of the pulmonary vasculature are an important feature of human lung diseases such as chronic obstructive pulmonary disease, pulmonary hypertension, and bronchopulmonary dysplasia. Experimental studies to investigate the pathogenesis or a therapeutic intervention in animal models of these diseases often require robust, meaningful, and efficient morphometric data that allow for appropriate statistical testing. The gold standard for obtaining such data is design-based stereology. However, certain morphological characteristics of the pulmonary vasculature make the implementation of stereological methods challenging. For example, the alveolar capillary network functions according to the sheet flow principle, thus making unbiased length estimations impossible and requiring other strategies to obtain mechanistic morphometric data. Another example is the location of pathological changes along the branches of the vascular tree. For developmental defects like in bronchopulmonary dysplasia or for pulmonary hypertension, it is important to know whether certain segments of the vascular tree are preferentially altered. This cannot be overcome by traditional stereological methods but requires the combination of a three-dimensional data set and stereology. The present review aims at highlighting the great potential while discussing the major challenges (such as time consumption and data volume) of this combined approach. We hope to raise interest in the potential of this approach and thus stimulate solutions to overcome the existing challenges.

Funder

Deutsche Forschungsgemeinschaft (DFG)

Bundesministerium für Bildung und Forschung

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3