Lipoxin A4-mediated KATP potassium channel activation results in cystic fibrosis airway epithelial repair

Author:

Buchanan Paul J.1,McNally Paul1,Harvey Brian J.2,Urbach Valerie123

Affiliation:

1. National Children's Research Center, Our Lady's Children Hospital, Dublin;

2. Department of Molecular Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland;

3. INSERM U845, Faculté de Médecine Paris Descartes, Site Necker, Paris, France

Abstract

The main cause of morbidity and mortality in cystic fibrosis (CF) is progressive lung destruction as a result of persistent bacterial infection and inflammation, coupled with reduced capacity for epithelial repair. Levels of the anti-inflammatory mediator lipoxin A4 (LXA4) have been reported to be reduced in bronchoalveolar lavages of patients with CF. We investigated the ability of LXA4 to trigger epithelial repair through the initiation of proliferation and migration in non-CF (NuLi-1) and CF (CuFi-1) airway epithelia. Spontaneous repair and cell migration were significantly slower in CF epithelial cultures (CuFi-1) compared with controls (NuLi-1). LXA4 triggered an increase in migration, proliferation, and wound repair of non-CF and CF airway epithelia. These responses to LXA4 were completely abolished by the ALX/FPR2 receptor antagonist, Boc2 and ALX/FPR2 siRNA. The KATP channel opener pinacidil mimicked the LXA4 effect on migration, proliferation, and epithelial repair, whereas the KATP channel inhibitor, glibenclamide, blocked the responses to LXA4. LXA4 did not affect potassium channel expression but significantly upregulated glibenclamide-sensitive (KATP) currents through the basolateral membrane of NuLi-1 and CuFi-1 cells. MAP kinase (ERK1/2) inhibitor, PD98059 , also inhibited the LXA4-induced proliferation of NuLi-1 and CuFi-1 cells. Finally, both LXA4 and pinacidil stimulated ERK-MAP kinase phosphorylation, whereas the effect of LXA4 on ERK phosphorylation was inhibited by glibenclamide. Taken together, our results provided evidence for a role of LXA4 in triggering epithelial repair through stimulation of the ALX/FPR2 receptor, KATP potassium channel activation, and ERK phosphorylation. This work suggests exogenous delivery of LXA4, restoring levels in patients with CF, perhaps as a potential therapeutic strategy.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3