Activation of Toll-like receptor 2 impairs hypoxic pulmonary vasoconstriction in mice

Author:

Petersen Bodil,Bloch Kenneth D.,Ichinose Fumito,Shin Hae-Sook,Shigematsu Misako,Bagchi Aranya,Zapol Warren M.,Hellman Judith

Abstract

Toll-like receptors (TLRs) mediate inflammation in sepsis, but their role in sepsis-induced respiratory failure is unknown. Hypoxic pulmonary vasoconstriction (HPV) is a unique vasoconstrictor response that diverts blood flow away from poorly ventilated lung regions. HPV is impaired in sepsis and after challenge with the TLR4 agonist lipopolysaccharide (LPS). Unlike TLR4 agonists, which are present only in Gram-negative bacteria, TLR2 agonists are ubiquitously expressed in all of the major classes of microorganisms that cause sepsis, including both Gram-positive and Gram-negative bacteria and fungi. We tested the hypothesis that (S)-[2,3-bis(palmitoyloxy)-(2RS)-propyl]- N-palmitoyl-(R)-Cys-(S)-Ser(S)-Lys4-OH, trihydrochloride (Pam3Cys), a TLR2 agonist, impairs HPV and compared selected pulmonary and systemic effects of Pam3Cys vs. LPS. HPV was assessed 22 h after challenge with saline, Pam3Cys, or LPS by measuring the increase in the pulmonary vascular resistance of the left lung before and during left lung alveolar hypoxia produced by left mainstem bronchus occlusion (LMBO). Additional endpoints included arterial blood gases during LMBO, hemodynamic parameters, weight loss, temperature, physical appearance, and several markers of lung inflammation. Compared with saline, challenge with Pam3Cys caused profound impairment of HPV, reduced systemic arterial oxygenation during LMBO, weight loss, leukopenia, and lung inflammation. In addition to these effects, LPS-challenged mice had lower rectal temperatures, metabolic acidosis, and were more ill appearing than Pam3Cys-challenged mice. These data indicate that TLR2 activation impairs HPV and induces deleterious systemic effects in mice and suggest that TLR2 pathways may be important in sepsis-induced respiratory failure.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3