Short-chain fatty acids improve inflamm-aging and acute lung injury in old mice

Author:

Hildebrand Christina B.12ORCID,Lichatz Rita1,Pich Andreas3,Mühlfeld Christian12ORCID,Woltemate Sabrina4,Vital Marius4,Brandenberger Christina125ORCID

Affiliation:

1. Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany

2. Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany

3. Institute of Toxicology, Core Facility Proteomics, Hannover Medical School, Hannover, Germany

4. Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany

5. Institute of Functional Anatomy, Charité - Universitätsmedizin Berlin, Berlin, Germany

Abstract

A chronic proinflammatory milieu (inflamm-aging) is observed in the elderly and associated with poorer prognosis in acute lung injury (ALI). Gut microbiome-derived short-chain fatty acids (SCFAs) are known to have immunomodulatory capabilities, but their function in the gut-lung axis in aging is poorly understood. Here, we analyzed the gut microbiome and its impact on inflammatory signaling in the aging lung and tested the effects of SCFAs in young (3 mo) and old (18 mo) mice that received either drinking water with a mixture of each 50 mM acetate, butyrate, and propionate for 2 wk or water alone. ALI was induced by intranasal lipopolysaccharide (LPS; n = 12/group) administration. Controls ( n = 8/group) received saline. Fecal pellets were sampled for gut microbiome analysis before and after LPS/saline treatment. The left lung lobe was collected for stereology and right lung lobes for cytokine and gene expression analysis, inflammatory cell activation, and proteomics. Different gut microbial taxa, such as Bifidobacterium, Faecalibaculum, and Lactobacillus correlated positively with pulmonary inflammation in aging, suggesting an impact on inflamm-aging in the gut-lung axis. The supplementation of SCFAs reduced inflamm-aging, oxidative stress, metabolic alteration, and enhanced activation of myeloid cells in the lungs of old mice. The enhanced inflammatory signaling in ALI of old mice was also reduced by SCFA treatment. In summary, the study provides new evidence that SCFAs play a beneficial role in the gut-lung axis of the aging organism by reducing pulmonary inflamm-aging and ameliorating enhanced severity of ALI in old mice.

Funder

Bundesministerium für Bildung und Forschung

Deutsche Forschungsgemeinschaft

Deutsches Zentrum für Lungenforschung

Medizinischen Hochschule Hannover

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3