(Pro)renin receptor regulates lung development via the Wnt/β-catenin signaling pathway

Author:

Liu Jie1,Zhou Yafan23,Liu Yalan1,Li Lei1,Chen Yan1,Liu Yali1,Feng Yumei4,Yosypiv Ihor V.5,Song Renfang5,Peng Hua1ORCID

Affiliation:

1. Department of Pediatrics, Union Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China

2. Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China

3. The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China

4. Department of Pharmacology, Center for Cardiovascular Research, University of Nevada School of Medicine, Reno, Nevada

5. Department of Pediatrics, Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana

Abstract

The (pro)renin receptor [(P)RR] binds to prorenin to activate the renin-angiotensin system and is essential for the development of many different organ systems. Whether the (P)RR also plays a role in lung development is unknown. Immunostaining was used to determine the spatial-temporal distribution of (P)RR in the embryonic, postnatal, and adult lungs. We created a lung-specific (P)RR knockout mouse [ Foxd1cre/+ -(P)RRflox/flox] and assessed changes in lung morphology, cell proliferation, and apoptosis using immunohistochemistry and TUNEL staining. (P)RR function was confirmed by using siRNA to knock down (P)RR in human bronchial epithelial cells (HBECs) and then using the CCK-8 assay and flow cytometry to assess cell proliferation and apoptosis. Gene expression changes after knockdown were assessed by RT-PCR and Western blotting. (P)RR is expressed in the club cells of the bronchial epithelium, and expression increases throughout development. Lung-specific (P)RR knockout disrupted branching morphogenesis, leading to lung hypoplasia and neonatal mortality. These defects were associated with increased apoptosis and decreased proliferation of the pulmonary epithelial and mesenchymal cells and may be mediated by downregulation of Wnt11, β-catenin, and Axin2. (P)RR regulates lung development through canonical Wnt/β-catenin signaling and may present a new target for strategies to treat lung hypoplasia.

Funder

National Natural Science Foundation of China (NSFC)

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3