Biphasic contractile response of pulmonary artery to hypoxia

Author:

Bennie R. E.1,Packer C. S.1,Powell D. R.1,Jin N.1,Rhoades R. A.1

Affiliation:

1. Department of Anesthesiology and Physiology/Biophysics, IndianaUniversity School of Medicine, Indianapolis 46202.

Abstract

Isolated perfused lungs exposed to low O2 exhibit a hypoxic pulmonary vasoconstriction response that is transient in nature. The purpose of this study was to determine whether the isolated pulmonary artery behaves similarly in response to hypoxia. Rat pulmonary arterial rings were placed in tissue baths (37 degrees C, air-5% CO2, pH = 7.4) and attached to force transducers. Maximum contractile responses (Po) to high K+ were elicited. After washout, arterial rings were submaximally contracted and made hypoxic (PO2 = 33.7 +/- 1.3, pH = 7.38 +/- 0.01). Aortic rings were used to obtain comparative data. The isolated pulmonary arterial hypoxic response was biphasic, displaying an initial rapid contraction of short duration (phase 1) then, before complete relaxation of this first response, a second slow but sustained contraction occurred (phase 2). Aortic rings did not exhibit a biphasic response, but showed only an initial short contraction followed by complete relaxation. The contractile response of the pulmonary artery was diminished when the endothelium was rendered nonfunctional. However, the phase 2 response was not endothelium dependent. Neither inhibitors of the lipoxygenase or cyclooxygenase pathways nor scavengers of extracellular reactive oxygen species had any effect on the biphasic hypoxic response. Pulmonary arterial hypoxic contractions were blunted when glucose was absent and appear to be dependent on glycolytic ATP. Results of this study show that hypoxia causes a biphasic contractile response of pulmonary arterial muscle and that two different mechanisms appear to be involved, since the transient phase 1 response is endothelium dependent, whereas the sustained contraction of phase 2 is endothelium independent.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3