Author:
Massaro Donald,Alexander Emma,Reiland Kristin,Hoffman Eric P.,Massaro Gloria DeCarlo,Clerch Linda Biadasz
Abstract
Alveolar regenerative gene expression is unidentified partly because its onset, after a regenerative stimulus, is unknown. Toward addressing this void, we used a mouse model in which calorie restriction produces alveolar loss, and ad libitum access to food after calorie restriction induces alveolar regeneration. We selected four processes (cell replication, angiogenesis, extracellular matrix remodeling, and guided cell motion) that would be required to convert a flat segment of alveolar wall into a septum that increases gas-exchange surface area. Global gene expression supportive of processes required to form a septum was present within 3 h of allowing calorie-restricted mice food ad libitum. One hour after providing calorie-restricted mice food ad libitum, RNA-level expression supportive of cell replication was present with little evidence of expression supportive of angiogenesis, extracellular matrix remodeling, or guided cell motion. Cell replication was more directly assayed by measuring DNA synthesis in lung. This measurement was made 3 h after allowing calorie-restricted mice food ad libitum because translation may be delayed. Ad libitum food intake, following calorie restriction, elevated DNA synthesis. Thus RNA expression 1 h after allowing calorie-restricted mice food ad libitum supported increased cell replication; measurements at 3 h revealed increased DNA synthesis and RNA expression, supportive of the three other processes required to form a septum. These findings identify the first hour after providing calorie-restricted mice ad libitum access to food as the onset of gene expression in this model that supports processes needed for alveolar regeneration.
Publisher
American Physiological Society
Subject
Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献