Nitration of surfactant protein A results in decreased ability to aggregate lipids

Author:

Haddad I. Y.1,Zhu S.1,Ischiropoulos H.1,Matalon S.1

Affiliation:

1. Department of Pediatrics, University of Alabama at Birmingham35233-6810, C, USA.

Abstract

We assessed the extent to which nitration of surfactant protein (SP) A, isolated from the bronchoalveolar lavage of patients with alveolar proteinosis, alters its ability to enhance lipid aggregation, bind lipids, and act synergistically with surfactant apoproteins B and C (SP-B, SP-C) in lowering the surface activity of surfactant lipids. SP-A was treated with various concentrations of tetranitromethane (TNM) at pH 6, 7.4, 8, or 10. Depending on the pH, TNM acts either as a nitrating (pH > or = 7.4) or an oxidizing agent (pH < or = 6). Exposure of SP-A to TNM (0.1-1 mM) at pH 7.4 or 8 for 30 min resulted in dose-and pH-dependent increases in nitrotyrosine, detected by Western blotting, enzyme-linked immunosorbent assay, and direct amino acid analysis. Treatment of SP-A with 0.5 mM TNM decreased its ability to aggregate lipids by 30% at pH 7.4, and 90% at pH 8, but had no effect on the disulfide-dependent oligomeric state of SP-A. In contrast, SP-A exposed to 1 mM TNM at pH 6 had background levels of nitrotyrosine and exhibited normal lipid aggregation properties. TNM, but not a hydroxyl radical-generating system, resulted in a pH-dependent loss of SP-A fluorescence, suggesting that tryptophan also may have been nitrated. Nitration of SP-A did not affect its ability to bind lipids. In addition, SP-A (1-3% by weight), treated with 0.25-0.5 mM TNM at pH 8, restored the surface-active properties of calf lung surfactant extract, previously damaged by exposure to peroxynitrite. We conclude that tyrosine nitration selectively inhibits the SP-A-mediated lipid aggregation without affecting its ability to bind lipids.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3