Affiliation:
1. Department of Medicine, University of Chicago, Illinois 60637,USA.
Abstract
Cationic proteins elicit contraction of airway smooth muscle, but the mechanisms by which this occurs are not completely understood. We studied potential mechanisms by which eosinophil major basic protein (MBP) and the synthetic cationic proteins poly-L-lysine (PL) and poly-L-arginine (PA) cause contraction of isolated guinea pig tracheal smooth muscle (TSM) in vivo. Topical application of 10(-8) mol/cm2 of each protein to an isolated tracheal segment elicited TSM contraction with potency PL > MBP > PA. Pretreatment with atropine blocked the subsequent response to MBP but did not block the response to either PL or PA. Pretreatment with indomethacin blocked the subsequent response to both MBP and PL but did not block the response to PA. We demonstrate that MBP causes contraction of guinea pig TSM both through stimulation of the parasympathetic nervous system and secretion of a cyclooxygenase mediator. Neither PL nor PA, while of similar molecular weight and charge as MBP, cause TSM contraction via the parasympathetic nervous system, though some cationic proteins may act via a prostanoid mediator. Thus the cationic charge of MBP is not solely responsible for its effects on TSM in the guinea pig.
Publisher
American Physiological Society
Subject
Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献