Vitamin A deficiency enhances ozone-induced lung injury

Author:

Paquette N. C.1,Zhang L. Y.1,Ellis W. A.1,Scott A. L.1,Kleeberger S. R.1

Affiliation:

1. Department of Environmental Health Sciences, The Johns HopkinsUniversity School of Hygiene and Public Health, Baltimore, Maryland 21205,USA.

Abstract

The present study determined the effects of vitamin A (vA) deficiency on the responses to ozone (O3) challenges in two inbred strains of mice that are differentially susceptible to O3-induced lung inflammation. Susceptible C57BL/6J (B6) and resistant C3H/HeJ (C3) dams at 2 wk gestation were fed test diets containing either 0 or 10 micrograms retinol/g diet. In mice that were maintained on vA-sufficient (vA+) diet, lung and liver tissue concentrations of vA and retinyl palmitate (RP) were significantly (P<0.05) lower in the B6 strain compared with C3, as measured by high-performance liquid chromatography techniques. vA and RP levels were significantly (P<0.05) reduced in lung and liver tissues of 8-wk old B6 and C3 mice that were maintained on a vA deficient (vA-) diet. vA+ and vA- mice of both strains were exposed to air or 0.3 ppm O3/72 h, and lung injury was assessed by differential cell count and total protein concentration in bronchoalveolar lavage (BAL) returns. O3 exposure caused significantly (P<0.05) greater increases in inflammatory cells and a total protein in BAL returns of vA+ B6 mice than vA+ C3 mice. vA deficiency significantly (P<0.05) enhanced O3-induced increases in polymorphonuclear leukocytes in C3 mice and epithelial cells loss in both strains. Compared with vA+ mice, lung permeability was also significantly (P<0.05) enhanced in vA- mice of both strains exposed to O3. vA replacement partially reversed the O3-induced lung injury that was enhanced by vA- diet. Results indicate that vA may have an important role in the pathogenesis of O3-induced lung injury in differentially susceptible inbred strains of mice.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3