Affiliation:
1. Cardiovascular Pulmonary Research Laboratory, Department of Medicine, University of Colorado Health Sciences Center, Denver, Colorado 80262
Abstract
Studies in humans indicate genetic effects on the ventilatory response to hypoxia, but the site of these effects is unknown. The present study explores the question of whether there are genetically directed effects on the intrinsic hypoxic chemosensitivity of the carotid body. The approach was to study these responses in two inbred rat strains [spontaneously hypertensive rats (SHR) and Fischer 344 (F-344)] and to measure in vivo carotid chemosensitivity as the change in carotid sinus nerve (CSN) activity during progressive, isocapnic hypoxia and the isolated, in vitro responses of excised superfused carotid bodies, loaded with the fluorimetric indicator fura 2, measured as the cytosolic calcium response to moderate hypoxia ([Formula: see text] = 55 mmHg). CSN responses in F-344 rats ( n = 12) were uniformly low, with a shape parameter A of 13.8 ± 6.59 (SE), whereas responses in SHR ( n = 15) were sevenfold higher (108 ± 24.1; P < 0.002) and showed greater variation. In vitro, intracellular calcium responses of superfused carotid bodies estimated from the fluorimetric ratio (340/380 nm) showed a greater peak increase during hypoxia in carotid bodies from SHR (140 ± 4.7%) than from F-344 rats (114 6.0%; P < 0.01). Our results indicate strain-related differences in hypoxic chemosensitivity that are intrinsic to the carotid body and that could mediate genetic effects on ventilatory responsiveness to hypoxia.
Publisher
American Physiological Society
Subject
Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献