Affiliation:
1. Department of Anesthesiology and Operative Intensive Care Medicine CCM/CVK, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
2. CIBER-Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
Abstract
Oxidative stress caused by mechanical ventilation contributes to the pathophysiology of ventilator-induced lung injury (VILI). A key mechanism maintaining redox balance is the upregulation of nuclear factor-erythroid-2-related factor 2 (Nrf2)-dependent antioxidant gene expression. We tested whether pretreatment with an Nrf2-antioxidant response element (ARE) pathway activator tert-butylhydroquinone (tBHQ) protects against VILI. Male C57BL/6J mice were pretreated with an intraperitoneal injection of tBHQ ( n = 10), an equivalent volume of 3% ethanol (EtOH3%, vehicle, n = 13), or phosphate-buffered saline (controls, n = 10) and were then subjected to high tidal volume (HVT) ventilation for a maximum of 4 h. HVT ventilation severely impaired arterial oxygenation ([Formula: see text] = 49 ± 7 mmHg, means ± SD) and respiratory system compliance, resulting in a 100% mortality among controls. Compared with controls, tBHQ improved arterial oxygenation ([Formula: see text] = 90 ± 41 mmHg) and respiratory system compliance after HVT ventilation. In addition, tBHQ attenuated the HVT ventilation-induced development of lung edema and proinflammatory response, evidenced by lower concentrations of protein and proinflammatory cytokines (IL-1β and TNF-α) in the bronchoalveolar lavage fluid, respectively. Moreover, tBHQ enhanced the pulmonary redox capacity, indicated by enhanced Nrf2-depentent gene expression at baseline and by the highest total glutathione concentration after HVT ventilation among all groups. Overall, tBHQ pretreatment resulted in 60% survival ( P < 0.001 vs. controls). Interestingly, compared with controls, EtOH3% reduced the proinflammatory response to HVT ventilation in the lung, resulting in 38.5% survival ( P = 0.0054 vs. controls). In this murine model of VILI, tBHQ increases the pulmonary redox capacity by activating the Nrf2-ARE pathway and protects against VILI. These findings support the efficacy of pharmacological Nrf2-ARE pathway activation to increase resilience against oxidative stress during injurious mechanical ventilation.
Funder
Deutsche Forschungsgemeinschaft
Publisher
American Physiological Society
Subject
Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献