Affiliation:
1. Division of Critical Care Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
2. Department of Biology, University of Arkansas at Pine Bluff, Pine Bluff, Arkansas
3. Antisense Discovery, Ionis Pharmaceuticals, Carlsbad, California
4. College of Medicine, University of Cincinnati, Cincinnati, Ohio
Abstract
α-1 Antitrypsin (AAT) deficiency is the leading genetic cause of emphysema; however, until recently, no genuine animal models of AAT deficiency existed, hampering the development of new therapies. This shortcoming is now addressed by both AAT-null and antisense oligonucleotide mouse models. The goal of this study was to more fully characterize the antisense oligonucleotide model. Both liver AAT mRNA and serum AAT levels were lower in anti-AAT versus control oligonucleotide-treated mice after 6, 12, and 24 wk. Six and twelve weeks of anti-AAT oligonucleotide therapy induced emphysema that was worse in female than male mice: mean linear intercept 73.4 versus 62.5 μm ( P = 0.000003). However, at 24 wk of treatment, control oligonucleotide-treated mice also developed emphysema. After 6 wk of therapy, anti-AAT male and female mice demonstrated a similar reduction serum AAT levels, and there were no sex or treatment-specific alterations in inflammatory, serine protease, or matrix metalloproteinase mRNAs, with the exception of chymotrypsin-like elastase 1 ( Cela1), which was 7- and 9-fold higher in anti-AAT versus control male and female lungs, respectively, and 1.6-fold higher in female versus male anti-AAT-treated lungs ( P = 0.04). While lung AAT protein levels were reduced in anti-AAT-treated mice, lung AAT mRNA levels were unaffected. These findings are consistent with increased emphysema susceptibility of female patients with AAT-deficiency. The anti-AAT oligonucleotide model of AAT deficiency is useful for compartment-specific, in vivo molecular biology, and sex-specific studies of AAT-deficient emphysema, but it should be used with caution in studies longer than 12-wk duration.
Publisher
American Physiological Society
Subject
Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献