Autocrine production of TGF-β1 promotes myofibroblastic differentiation of neonatal lung mesenchymal stem cells

Author:

Popova Antonia P.1,Bozyk Paul D.2,Goldsmith Adam M.1,Linn Marisa J.1,Lei Jing1,Bentley J. Kelley1,Hershenson Marc B.13

Affiliation:

1. Departments of 1Pediatrics and Communicable Diseases,

2. Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan

3. Molecular and Integrative Physiology, and

Abstract

We have isolated mesenchymal stem cells (MSCs) from tracheal aspirates of premature infants with respiratory distress. We examined the capacity of MSCs to differentiate into myofibroblasts, cells that participate in lung development, injury, and repair. Gene expression was measured by array, qPCR, immunoblot, and immunocytochemistry. Unstimulated MSCs expressed mRNAs encoding contractile (e.g., ACTA2, TAGLN), extracellular matrix ( COL1A1 and ELN), and actin-binding ( DBN1, PXN) proteins, consistent with a myofibroblast phenotype, although there was little translation into immunoreactive protein. Incubation in serum-free medium increased contractile protein ( ACTA2, MYH11) gene expression. MSC-conditioned medium showed substantial levels of TGF-β1, and treatment of serum-deprived cells with a type I activin receptor-like kinase inhibitor, SB-431542, attenuated the expression of genes encoding contractile and extracellular matrix proteins. Treatment of MSCs with TGF-β1 further induced the expression of mRNAs encoding contractile ( ACTA2, MYH11, TAGLN, DES) and extracellular matrix proteins ( FN1, ELN, COL1A1, COL1A2), and increased the protein expression of α-smooth muscle actin, myosin heavy chain, and SM22. In contrast, human bone marrow-derived MSCs failed to undergo TGF-β1-induced myofibroblastic differentiation. Finally, primary cells from tracheal aspirates behaved in an identical manner as later passage cells. We conclude that human neonatal lung MSCs demonstrate an mRNA expression pattern characteristic of myofibroblast progenitor cells. Autocrine production of TGF-β1 further drives myofibroblastic differentiation, suggesting that, in the absence of other signals, fibrosis represents the “default program” for neonatal lung MSC gene expression. These data are consistent with the notion that MSCs play a key role in neonatal lung injury and repair.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3