Author:
Margulis Alexander,Nocka Karl H.,Wood Nancy L.,Wolf Stanley F.,Goldman Samuel J.,Kasaian Marion T.
Abstract
Mast cell-fibroblast interactions may contribute to fibrosis in asthma and other disease states. Fibroblast contraction is known to be stimulated by coculture with the human mast cell line, HMC-1, or by mast cell-derived agents. Matrix metalloproteinases (MMPs) can also mediate contraction, but the MMP-dependence of mast cell-induced fibroblast contractility is not established, and the consequences of mast cell activation within the coculture system have not been fully explored. We demonstrate that activation of primary human mast cells (pHMC) with IgE receptor cross-linking, or activation of HMC-1 with C5a, enhanced contractility of human lung fibroblasts in a three-dimensional collagen lattice system. This enhanced contractility was inhibited by the pan-MMP antagonist, batimastat, and was transferrable in the conditioned medium of activated mast cells. Exogenously added MMPs promoted gel contraction by mediating the proteolytic activation of latent transforming growth factor-β (TGF-β). Consistent with this, fibroblast contraction induced by mast cell activation was enhanced by addition of excess latent TGF-β to the cultures. Batimastat inhibited this response, suggesting that MMPs capable of activating latent TGF-β were released following mast cell activation in coculture with fibroblasts. Collagen production was also stimulated by activated mast cells in an MMP-dependent manner. MMP-2 and MMP-3 content of the gels increased in the presence of activated mast cells, and inhibition of these enzymes blocked the contractile response. These findings demonstrate the MMP dependence of mast cell-induced fibroblast contraction and collagen production.
Publisher
American Physiological Society
Subject
Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology
Cited by
36 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献