Airway surface liquid depth measured in ex vivo fragments of pig and human trachea: dependence on Na+ and Cl− channel function

Author:

Song Yuanlin1,Namkung Wan2,Nielson Dennis W.3,Lee Jae-Woo1,Finkbeiner Walter E.4,Verkman A. S.2

Affiliation:

1. Departments of 1Anesthesia and Perioperative Care,

2. Medicine and Physiology, and

3. Pediatrics, University of California, San Francisco; and

4. Department of Pathology, San Francisco General Hospital, University of California, San Francisco, California

Abstract

The airway surface liquid (ASL) is the thin fluid layer lining the airways whose depth may be reduced in cystic fibrosis. Prior measurements of ASL depth have been made in airway epithelial cell cultures. Here, we established methodology to measure ASL depth to ∼1-μm accuracy in ex vivo fragments of freshly obtained human and pig tracheas. Airway fragments were mounted in chambers designed for perfusion of the basal surface and observation of the apical, fluorescently stained ASL by scanning confocal microscopy using a high numerical aperture lens immersed in perfluorocarbon. Measurement accuracy was verified using standards of specified fluid thickness. ASL depth in well-differentiated primary cultures of human nasal respiratory epithelium was 8.0 ± 0.5 μm (SE 10 cultures) under basal conditions, 8.4 ± 0.4 μm following ENaC inhibition by amiloride, and 14.5 ± 1.2 μm following CFTR stimulation by cAMP agonists. ASL depth in human trachea was 7.0 ± 0.7 μm under basal conditions, 11.0 ± 1.7 μm following amiloride, 17.0 ± 3.4 μm following cAMP agonists, and 7.1 ± 0.5 μm after CFTR inhibition. Similar results were found in pig trachea. This study provides the first direct measurements of ASL depth in intact human airways and indicates the involvement of ENaC sodium channels and CFTR chloride channels in determining ASL depth. We suggest that CF lung disease may be caused by the inability of CFTR-deficient airways to increase their ASL depth transiently following secretory stimuli that in non-CF airways produce transient increases in ASL depth.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3