What leads to different mediators of alkalosis-induced vasodilation in isolated and in situ pulmonary vessels?

Author:

Gordon John B.1,VanderHeyden Michele A.1,Halla Ted R.1,Cortez Edmundo P.1,Hernandez Guillermo1,Haworth Steven T.2,Dawson Christopher A.2,Madden Jane A.3

Affiliation:

1. Departments of Pediatrics (Critical Care),

2. Physiology, and

3. Neurology, Medical College of Wisconsin and Zablocki Veterans Administration Medical Center, Milwaukee, Wisconsin 53226

Abstract

We previously found that nitric oxide synthase (NOS) inhibition fully blocked alkalosis-induced relaxation of piglet pulmonary artery and vein rings. In contrast, NOS inhibition alone had no effect on alkalosis-induced pulmonary vasodilation in isolated piglet lungs. This study sought to identify factors contributing to the discordance between isolated and in situ pulmonary vessels. The roles of pressor stimulus (hypoxia vs. the thromboxane mimetic U-46619), perfusate composition (blood vs. physiological salt solution), and flow were assessed. Effects of NOS inhibition on alkalosis-induced dilation were also directly compared in 150–350-μm-diameter cannulated arteries and 150–900-μm-diameter, angiographically visualized, in situ arteries. Finally, effects of NOS inhibition on alkalosis-induced vasodilation were measured in intact piglets. NOS inhibition with N ω-nitro-l-arginine fully abolished alkalosis-induced vasodilation in all cannulated arteries but failed to alter alkalosis-induced vasodilation in intact lungs. The results indicate that investigation of other factors, such as perivascular tissue (e.g., adventitia and parenchyma) and remote signaling pathways, will need to be carried out to reconcile this discordance between isolated and in situ arteries.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3