Mitogen-activated protein kinases regulate HO-1 gene transcription after ischemia-reperfusion lung injury

Author:

Zhang Xuchen1,Bedard Eric L.2,Potter Richard2,Zhong Robert2,Alam Jawed3,Choi Augustine M. K.4,Lee Patty J.1

Affiliation:

1. Section of Pulmonary and Critical Care Medicine, Yale University School of Medicine, New Haven, Connecticut 06520;

2. Department of Surgery, University of Western Ontario, London Ontario, Canada N6A 5A5;

3. Department of Molecular Genetics, Alton Ochsner Medical Foundation and Department of Biochemistry and Molecular Biology, Louisiana State University Medical Center, New Orleans, Louisiana 70121; and

4. Division of Pulmonary, Allergy, and Critical Care, University of Pittsburgh, Pittsburgh, Pennsylvania 15213

Abstract

Lung ischemia-reperfusion (I-R) is an important model of oxidant-mediated acute lung and vascular injury. Heme oxygenase-1 (HO-1) is a cytoprotective gene that is markedly induced by lung I-R injury. HO-1 mRNA is increased in mouse lung after 30 min of lung hilar clamping (ischemia) followed by 2–6 h of unclamping (reperfusion) compared with control mice. In a variety of vascular cell types, HO-1 mRNA is induced after 24 h of anoxia followed by 30 min–1 h of reoxygenation (A-R). Transfection studies reveal that the promoter and 5′-distal enhancer E1 are necessary and sufficient for increased HO-1 gene transcription after A-R. Immunoblotting studies show all three subfamilies of MAPKs (ERK, JNK, and p38) are activated by 15 min of reperfusion. We also demonstrate that HO-1 gene transcription after A-R involves ERK, JNK, and p38 MAPK pathways. Together, our data show that I-R not only induces HO-1 gene expression in mouse lungs and vascular cells but that gene transcription occurs via the promoter and E1 enhancer and involves upstream MAPK pathways.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

Cited by 102 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3