Phorbol esters increase MLC phosphorylation and actin remodeling in bovine lung endothelium without increased contraction

Author:

Bogatcheva Natalia V.1,Verin Alexander D.1,Wang Peiyi1,Birukova Anna A.1,Birukov Konstantin G.1,Mirzopoyazova Tamara1,Adyshev Djanybek M.1,Chiang Eddie T.1,Crow Michael T.1,Garcia Joe G. N.1

Affiliation:

1. Division of Pulmonary and Critical Care Medicine, Center for Translational Regulatory Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21224

Abstract

Direct protein kinase C (PKC) activation with phorbol myristate acetate (PMA) results in the loss of endothelial monolayer integrity in bovine lung endothelial cells (EC) but produces barrier enhancement in human lung endothelium. To extend these findings, we studied EC contractile events and observed a 40% increase in myosin light chain (MLC) phosphorylation in bovine endothelium following PMA challenge. The increase in PMA-mediated MLC phosphorylation occurred at sites distinct from Ser19/Thr18, sites catalyzed by MLC kinase (MLCK), and immunoblotting with antibodies specific to phosphorylated Ser19/Thr18demonstrated profound time-dependent Ser19/Thr18dephosphorylation. These events occurred in conjunction with rearrangement of stress fibers into a grid-like network, but without an increase in cellular contraction as measured by silicone membrane wrinkling assay. The PMA-induced MLC dephosphorylation was not due to kinase inhibition but, rather, correlated with rapid increases in myosin-associated phosphatase 1 (PPase 1) activity. These data suggest that PMA-mediated EC barrier regulation may involve dual mechanisms that alter MLC phosphorylation. The increase in bovine MLC phosphorylation likely occurs via direct PKC-dependent MLC phosphorylation in conjunction with decreases in Ser19/Thr18phosphorylation catalyzed by MLCK due to PMA-induced increases in PPase 1 activity. Together, these events result in stress fiber destabilization and profound actin rearrangement in bovine endothelium, which may result in the physiological alterations observed in these models.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3