Hypoxia-induced endothelial CX3CL1 triggers lung smooth muscle cell phenotypic switching and proliferative expansion

Author:

Zhang Jianliang1,Hu Hanbo1,Palma Nadia L.1,Harrison Jeffrey K.2,Mubarak Kamal K.1,Carrie Robin D.1,Alnuaimat Hassan1,Shen Xiaoqiang1,Luo Defang2,Patel Jawaharlal M.13

Affiliation:

1. Departments of Medicine and

2. Pharmacology and Therapeutics, University of Florida and

3. Veterans Affairs Medical Center, Gainesville, Florida

Abstract

Distal arterioles with limited smooth muscles help maintain the high blood flow and low pressure in the lung circulation. Chronic hypoxia induces lung distal vessel muscularization. However, the molecular events that trigger alveolar hypoxia-induced peripheral endothelium modulation of vessel wall smooth muscle cell (SMC) proliferation and filling of nonmuscular areas are unclear. Here, we investigated the role of CX3CL1/CX3CR1 system in endothelial-SMC cross talk in response to hypoxia. Human lung microvascular endothelial cells responded to alveolar oxygen deficiency by overproduction of the chemokine CX3CL1. The CX3CL1 receptor CX3CR1 is expressed by SMCs that are adjacent to the distal endothelium. Hypoxic release of endothelial CX3CL1 induced SMC phenotypic switching from the contractile to the proliferative state. Inhibition of CX3CR1 prevented CX3CL1 stimulation of SMC proliferation and monolayer expansion. Furthermore, CX3CR1 deficiency attenuated spiral muscle expansion, distal vessel muscularization, and pressure elevation in response to hypoxia. Our findings indicate that the capillary endothelium relies on the CX3CL1-CX3CR1 axis to sense alveolar hypoxia and promote peripheral vessel muscularization. These results have clinical significance in the development of novel therapeutics that target mechanisms of distal arterial remodeling associated with pulmonary hypertension induced by oxygen deficiency that is present in people living at high altitudes and patients with obstructive lung diseases.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3