Insulin-like growth factor-I stimulates differentiation of ATII cells to ATI-like cells through activation of Wnt5a

Author:

Ghosh Manik C.1,Gorantla Vijay2,Makena Patrudu S.2,Luellen Charlean2,Sinclair Scott E.12,Schwingshackl Andreas13,Waters Christopher M.12

Affiliation:

1. Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee;

2. Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee; and

3. Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee

Abstract

Alveolar type II (ATII) epithelial cells play a crucial role in the repair and remodeling of the lung following injury. ATII cells have the capability to proliferate and differentiate into alveolar type I (ATI) cells in vivo and into an ATI-like phenotype in vitro. While previous reports indicate that the differentiation of ATII cells into ATI cells is a complex biological process, the underlying mechanism responsible for differentiation is not fully understood. To investigate factors involved in this differentiation in culture, we used a PCR array and identified several genes that were either up- or downregulated in ATI-like cells ( day 6 in culture) compared with day 2 ATII cells. Insulin-like growth factor-I (IGF-I) mRNA was increased nearly eightfold. We found that IGF-I was increased in the culture media of ATI-like cells and demonstrated a significant role in the differentiation process. Treatment of ATII cells with recombinant IGF-I accelerated the differentiation process, and this effect was abrogated by the IGF-I receptor blocker PQ401. We found that Wnt5a, a member of the Wnt-Frizzled pathway, was activated during IGF-I-mediated differentiation. Both protein kinase C and β-catenin were transiently activated during transdifferentiation. Knocking down Wnt5a using small-interfering RNA abrogated the differentiation process as indicated by changes in the expression of an ATII cell marker (prosurfactant protein-C). Treatment of wounded cells with either IGF-I or Wnt5a stimulated wound closure. These results suggest that IGF-I promotes differentiation of ATII to ATI cells through the activation of a noncanonical Wnt pathway.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3