Cytokine-induced arginase activity in pulmonary endothelial cells is dependent on Src family tyrosine kinase activity

Author:

Chang Rossana,Chicoine Louis G.,Cui Hongmei,Kanagy Nancy L.,Walker Benjimen R.,Liu Yusen,English B. Keith,Nelin Leif D.

Abstract

We hypothesized that the Src family tyrosine kinases (STKs) are involved in the upregulation of arginase and inducible nitric oxide synthase (iNOS) expression in response to inflammatory stimuli in pulmonary endothelial cells. Treatment of bovine pulmonary arterial endothelial cells (bPAEC) with lipopolysaccharide and tumor necrosis factor-α (L/T) resulted in increased urea and nitric oxide (NO) production, and this increase in urea and NO production was inhibited by the STK inhibitor PP1 (10 μM). The STK inhibitors PP2 (10 μM) and herbimycin A (10 μM) also prevented the L/T-induced expression of both arginase II and iNOS mRNA in bPAEC. Together, the data demonstrate a central role of STK in the upregulation of both arginase II and iNOS in bPAEC in response to L/T treatment. To identify the specific kinase(s) required for the induction of urea and NO production, we studied human pulmonary microvascular endothelial cells (hPMVEC) so that short interfering RNA (siRNA) techniques could be employed. We found that hPMVEC express Fyn, Yes, c-Src, Lyn, and Blk and that the protein expression of Fyn, Yes, c-Src, and Lyn could be inhibited with specific siRNA. The siRNA targeting Fyn prevented the cytokine-induced increase in urea and NO production, whereas siRNAs specifically targeting Yes, c-Src, and Lyn had no appreciable effect on cytokine-induced urea and NO production. These findings support our hypothesis that inflammatory stimuli lead to increased urea and NO production through a STK-mediated pathway. Furthermore, these results indicate that the STK Fyn plays a critical role in this process.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3