Effect of p47phoxgene deletion on ROS production and oxygen sensing in mouse carotid body chemoreceptor cells

Author:

He L.,Dinger B.,Sanders K.,Hoidal J.,Obeso A.,Stensaas L.,Fidone S.,Gonzalez C.

Abstract

Membrane potential in oxygen-sensitive type I cells in carotid body is controlled by diverse sets of voltage-dependent and -independent K+channels. Coupling of Po2to the open-closed state of channels may involve production of reactive oxygen species (ROS) by NADPH oxidase. One hypothesis suggests that ROS are produced in proportion to the prevailing Po2and a subset of K+channels closes as ROS levels decrease. We evaluated ROS levels in normal and p47phoxgene-deleted [NADPH oxidase knockout (KO)] type I cells using the ROS-sensitive dye dihydroethidium (DHE). In normal cells, hypoxia elicited an increase in ROS, which was blocked by the specific NADPH oxidase inhibitor 4-(2-aminoethyl)-benzenesulfonyl fluoride (AEBSF, 3 mM). KO type I cells did not respond to hypoxia, but the mitochondrial uncoupler azide (5 μM) elicited increased fluorescence in both normal and KO cells. Hypoxia had no effect on ROS production in sensory and sympathetic neurons. Methodological control experiments showed that stimulation of neutrophils with a cocktail containing the chemotactic peptide N-formyl-Met-Leu-Phe (1 μM), arachidonic acid (10 μM), and cytochalasin B (5 μg/ml) elicited a rapid increase in DHE fluorescence. This response was blocked by the NADPH oxidase inhibitor diphenyleneiodonium (10 μM). KO neutrophils did not respond; however, azide (5 μM) elicited a rapid increase in fluorescence. Physiological studies in type I cells demonstrated that hypoxia evoked an enhanced depression of K+current and increased intracellular Ca2+levels in KO vs. normal cells. Moreover, AEBSF potentiated hypoxia-induced increases in intracellular Ca2+and enhanced the depression of K+current in low O2. Our findings suggest that local compartmental increases in oxidase activity and ROS production inhibit the activity of type I cells by facilitating K+channel activity in hypoxia.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3