Protein kinase A phosphorylation of tau-serine 214 reorganizes microtubules and disrupts the endothelial cell barrier

Author:

Zhu Bing12,Zhang Li12,Creighton Judy12,Alexeyev Mikhail32,Strada Samuel J.1,Stevens Troy142

Affiliation:

1. Department of Pharmacology,

2. Center for Lung Biology, University of South Alabama, Mobile, Alabama

3. Department of Cell Biology and Neuroscience,

4. Department of Medicine, and

Abstract

Intracellular cAMP is compartmentalized to near membrane domains in endothelium, where it strengthens endothelial cell barrier function. Phosphodiesterase 4D4 (PDE4D4) interacts with the spectrin membrane skeleton and prevents cAMP from accessing microtubules. Expression of a dominant-negative PDE4D4 peptide enables cAMP to access microtubules, where it results in phosphorylation of the nonneuronal microtubule-associated protein tau at serine 214. Presently, we sought to determine whether PKA is responsible for tau-Ser214 phosphorylation and furthermore whether PKA phosphorylation of tau-Ser214 is sufficient to reorganize microtubules and induce endothelial cell gaps. In cells expressing the dominant-negative PDE4D4 peptide, forskolin activated transmembrane adenylyl cyclases, increased cAMP, and induced tau-Ser214 phosphorylation that was accompanied by microtubule reorganization. PKA catalytic and regulatory I subunits, but not the regulatory II subunit, coassociated with reorganized microtubules. To determine the functional consequence of tau-Ser214 phosphorylation, wild-type human tau40 and tau40 engineered to possess an alanine point mutation (S214A) were stably expressed in endothelium. In cells expressing the dominant-negative PDE4D4 peptide and tau-S214A, PKA-dependent phosphorylation of both the endogenous and heterologously expressed tau were abolished. Expression of tau-S214A prevented forskolin from depolymerizing microtubules, inducing intercellular gaps, and increasing macromolecular permeability. These findings therefore identify nonneuronal tau as a critical cAMP-responsive microtubule-associated protein that controls microtubule architecture and endothelial cell barrier function.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3