M4 muscarinic receptors mediate acetylcholine-induced suppressant effects on the cough reflex in the caudal nucleus tractus solitarii of the rabbit

Author:

Cinelli Elenia1,Iovino Ludovica1,Bongianni Fulvia1,Pantaleo Tito1,Lavorini Federico2,Mannini Claudia2,Mutolo Donatella1ORCID

Affiliation:

1. Section of Physiology, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy

2. Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy

Abstract

It has been shown that muscarinic acetylcholine receptors (mAChRs) located within the caudal nucleus tractus solitarii (cNTS) mediate a cholinergic inhibitory control mechanism of the cough reflex. Thus, identification of the involved mAChR subtypes could be of considerable interest for novel therapeutic strategies. In pentobarbital sodium-anesthetized, spontaneously breathing rabbits we investigated the contribution of different mAChR subtypes in the modulation of mechanically and chemically induced cough reflex. Bilateral microinjections of 1 mM muscarine into the cNTS increased respiratory frequency and decreased expiratory activity even to complete suppression. Interestingly, muscarine induced strong cough-suppressant effects up to the complete abolition of the reflex. Microinjections of specific mAChR subtype antagonists (M1–M5) into the cNTS were performed. Only microinjections of the M4 antagonist tropicamide (1 mM) prevented muscarine-induced changes in both respiratory activity and cough reflex. The results are discussed in light of the notion that cough involves the activation of the nociceptive system. They also suggest that M4 receptor agonists may have an important role in cough downregulation within the cNTS.

Funder

Fondazione Cassa di Risparmio di Firenze

Università degli Studi di Firenze

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Reply to Cinelli et al.;American Journal of Physiology-Lung Cellular and Molecular Physiology;2023-11-01

2. Reply to Myslivecek;American Journal of Physiology-Lung Cellular and Molecular Physiology;2023-07-01

3. Muscarinic receptors in the nucleus tractus solitarii;American Journal of Physiology-Lung Cellular and Molecular Physiology;2023-07-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3