Mechanisms of organophosphate insecticide-induced airway hyperreactivity

Author:

Fryer Allison D.1,Lein Pamela J.1,Howard Angela S.1,Yost Bethany L.1,Beckles Rondell A.1,Jett David A.1

Affiliation:

1. Department of Environmental Health Sciences, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205

Abstract

It has been suggested that pesticide exposure may be a contributing factor underlying the increased incidence of asthma in the United States and other industrialized nations. To test this hypothesis, airway hyperreactivity was measured in guinea pigs exposed to chlorpyrifos, a widely used organophosphate pesticide. Electrical stimulation of the vagus nerves caused frequency-dependent bronchoconstriction that was significantly potentiated in animals 24 h or 7 days after a single subcutaneous injection of either 390 mg/kg or 70 mg/kg of chlorpyrifos, respectively. Mechanisms by which chlorpyrifos may cause airway hyperreactivity include inhibition of acetylcholinesterase (AChE) or dysfunction of M3 muscarinic receptors on airway smooth muscle or of autoinhibitory M2 muscarinic receptors on parasympathetic nerves in the lung. AChE activity in the lung was significantly inhibited 24 h after treatment with 390 mg/kg of chlorpyrifos, but not 7 days after injection of 70 mg/kg of chlorpyrifos. Acute exposure to eserine (250 μg/ml) also significantly inhibited lung AChE but did not potentiate vagally induced bronchoconstriction. Neuronal M2 receptor function was tested using the M2 agonist pilocarpine, which inhibits vagally induced bronchoconstriction in control animals. In chlorpyrifos-treated animals, pilocarpine dose-response curves were shifted significantly to the right, demonstrating decreased responsiveness of neuronal M2 receptors. In contrast, chlorpyrifos treatment did not alter methacholine-induced bronchoconstriction, suggesting that chlorpyrifos does not alter M3 muscarinic receptor function on airway smooth muscle. These data demonstrate that organophosphate insecticides can cause airway hyperreactivity in the absence of AChE inhibition by decreasing neuronal M2 receptor function.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3