Competitive cleavage of SARS-CoV-2 spike protein and epithelial sodium channel by plasmin as a potential mechanism for COVID-19 infection

Author:

Hou Yapeng1,Yu Tong1,Wang Tingyu1,Ding Yan1,Cui Yong2,Nie Hongguang1ORCID

Affiliation:

1. Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, People’s Republic of China

2. Department of Anesthesiology, the First Hospital of China Medical University, Shenyang, People’s Republic of China

Abstract

Cleavage of the furin site in SARS-CoV-2 spike (S) protein accounts for increased transmissibility of COVID-19 by promoting the entry of virus into host cells through specific angiotensin-converting enzyme 2 (ACE2) receptors. Plasmin, a key serine protease of fibrinolysis system, cleaves the furin site of γ subunit of human epithelial sodium channels (ENaCs). Sharing the plasmin cleavage by viral S and host ENaC proteins may competitively inter-regulate SARS-CoV-2 transmissibility and edema resolution via the ENaC pathway. To address this possibility, we analyzed single-cell RNA sequence (scRNA-seq) data sets and found that PLAU (encoding urokinase plasminogen activator), SCNN1G (γENaC), and ACE2 (SARS-CoV-2 receptor) were co-expressed in airway/alveolar epithelial cells. The expression levels of PLAU and FURIN were significantly higher compared with TMPRSS2 in healthy group. This difference was further amplified in both epithelial and immune cells in patients with moderate/severe COVID-19 and SARS-CoV-2 infected airway/alveolar epithelial cell lines. Of note, plasmin cleaved the S protein and facilitated the entry of pseudovirus in HEK293 cells. Conclusively, SARS-CoV-2 may expedite infusion by competing the fibrinolytic protease network with ENaC.

Funder

National Natural Science Foundation of China

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3