Wood smoke extract induces oxidative stress-mediated caspase-independent apoptosis in human lung endothelial cells: role of AIF and EndoG

Author:

Liu Po-Len,Chen Yuh-Lien,Chen Yung-Hsiang,Lin Shing-Jong,Kou Yu Ru

Abstract

Although a link between toxic smoke and oxidant lung vascular injury has been indicated, the cellular mechanisms of smoke-induced injury to lung endothelial cells are unknown. We investigated oxidative stress and apoptosis induced by wood smoke extract (SE) in human pulmonary artery endothelial cells (HPAECs) and delineated their relationship. We found that SE increased intracellular reactive oxygen species (ROS), depleted intracellular glutathione, and upregulated Cu/Zn superoxide dismutase and heme oxygenase-1 (2 antioxidant enzymes), but it failed to alter the expression of catalase and glutathione peroxidase. In addition, SE promoted apoptosis as indicated by the external exposure of membrane phosphatidylserine, the loss of mitochondrial membrane potential, an increase in the level of Bax (a proapoptotic protein), and enhanced DNA fragmentation. This apoptosis was associated with mitochondrial-to-nuclear translocation of apoptosis-inducing factor (AIF) and endonuclease G (EndoG) (2 apoptogenic proteins) but was independent of caspase cascade activation. Whereas N-acetylcysteine (an antioxidant) effectively reversed the SE-induced increase in ROS and depletion of glutathione, it also suppressed SE-induced nuclear translocation of either AIF or EndoG and prevented the enhanced DNA fragmentation that would have resulted from this. We conclude that 1) although SE upregulates Cu/Zn superoxide dismutase and heme oxygenase-1, it nevertheless increases intracellular oxidative stress in HPAECs, and 2) SE promotes oxidative stress-mediated caspase-independent HPAEC apoptosis that involves mitochondrial-to-nuclear translocation of AIF and EndoG. Thus modulations of the expression of antioxidant enzymes and the caspase-independent apoptotic pathway are possible target choices for potential therapeutic regimes to treat smoke-induced lung injury.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

Cited by 86 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3