Persistent bronchiolar remodeling following brief ventilation of the very immature ovine lung

Author:

O'Reilly Megan1,Hooper Stuart B.2,Allison Beth J.2,Flecknoe Sharon J.2,Snibson Ken3,Harding Richard1,Sozo Foula1

Affiliation:

1. Department of Anatomy and Developmental Biology and

2. Department of Physiology, Monash University, Victoria; and

3. School of Veterinary Science, University of Melbourne, Victoria, Australia

Abstract

Children and adults who were mechanically ventilated following preterm birth are at increased risk of reduced lung function, suggesting small airway dysfunction. We hypothesized that short periods of mechanical ventilation of very immature lungs can induce persistent bronchiolar remodeling that may adversely affect later lung function. Our objectives were to characterize the effects of brief, positive-pressure ventilation per se on the small airways in very immature, surfactant-deficient lungs and to determine whether the effects persist after the cessation of ventilation. Fetal sheep (0.75 of term) were mechanically ventilated in utero with room air (peak inspiratory pressure 40 cmH2O, positive end-expiratory pressure 4 cmH2O, 65 breaths/min) for 6 or 12 h, after which tissues were collected; another group was studied 7 days after 12-h ventilation. Age-matched unventilated fetuses were controls. The mean basement membrane perimeter of airways analyzed was 548.6 ± 8.5 μm and was not different between groups. Immediately after ventilation, 21% of airways had epithelial injury; in airways with intact epithelium, there was more airway smooth muscle (ASM) and less collagen, and the epithelium contained more mucin-containing and apoptotic cells and fewer proliferating cells. Seven days after ventilation, epithelial injury was absent but the epithelium was thicker, with greater cell turnover; there were increased amounts of bronchiolar collagen and ASM and fewer alveolar attachments. The increase in ASM was likely due to cellular hypertrophy rather than hyperplasia. We conclude that brief mechanical ventilation of the very immature lung induces remodeling of the bronchiolar epithelium and walls that lasts for at least 7 days; such changes could contribute to later airway dysfunction.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3