High tidal volume mechanical ventilation with hyperoxia alters alveolar type II cell adhesion

Author:

Desai Leena P.,Sinclair Scott E.,Chapman Kenneth E.,Hassid Aviv,Waters Christopher M.

Abstract

Patients with acute respiratory distress syndrome undergoing mechanical ventilation may be exposed to both high levels of stretch and high levels of oxygen. We hypothesized that the combination of high stretch and hyperoxia promotes loss of epithelial adhesion and impairs epithelial repair mechanisms necessary for restoration of barrier function. We utilized a model of high tidal volume mechanical ventilation (25 ml/kg) with hyperoxia (50% O2) in rats to investigate alveolar type II (AT2) cell adhesion and focal adhesion signaling. AT2 cells isolated from rats exposed to hyperoxia and high tidal volume mechanical ventilation (MVHO) exhibited significantly decreased cell adhesion and reduction in phosphotyrosyl levels of focal adhesion kinase (FAK) and paxillin compared with control rats, rats exposed to hyperoxia without ventilation (HO), or rats ventilated with normoxia (MV). MV alone increased phosphorylation of p130Cas. RhoA activation was increased by MV, HO, and the combination of MV and HO. Treatment of MVHO cells with keratinocyte growth factor (KGF) for 1 h upon isolation reduced RhoA activity and restored attachment to control levels. Attachment and migration of control AT2 cells was significantly decreased by constitutively active RhoA or a kinase inactive form of FAK (FRNK), whereas expression of dominant negative RhoA in cells from MVHO-treated rats restored cell adhesion. Mechanical ventilation with hyperoxia promotes changes in focal adhesion proteins and RhoA in AT2 cells that may be deleterious for cell adhesion and migration.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3