Expression of functional nicotinic acetylcholine receptors in neuroepithelial bodies of neonatal hamster lung

Author:

Fu Xiao Wen,Nurse Colin A.,Farragher Suzanne M.,Cutz Ernest

Abstract

Pulmonary neuroepithelial bodies (NEB) are presumed airway chemoreceptors involved in respiratory control, especially in the neonate. Nicotine is known to affect both lung development and control of breathing. We report expression of functional nicotinic acetylcholine receptors (nAChR) in NEB cells of neonatal hamster lung using a combination of morphological and electrophysiological techniques. Nonisotopic in situ hybridization method was used to localize mRNA for the β2-subunit of nAChR in NEB cells. Double-label immunofluorescence confirmed expression of α4-, α7-, and β2-subunits of nAChR in NEB cells. The electrophysiological characteristics of nAChR in NEB cells were studied using the whole cell patch-clamp technique on fresh lung slices. Application of nicotine (∼0.1-100 μM) evoked inward currents that were concentration dependent (EC50 = 3.8 μM; Hill coefficient = 1.1). ACh (100 μM) and nicotine (50 μM) produced two types of currents. In most NEB cells, nicotine-induced currents had a single desensitizing component that was blocked by mecamylamine (50 μM) and dihydro-β-erythroidine (50 μM). In some NEB cells, nicotine-induced current had two components, with fast- and slow-desensitizing kinetics. The fast component was selectively blocked by methyllcaconitine (MLA, 10 nM), whereas both components were inhibited by mecamylamine. Choline (0.5 mM) also induced an inward current that was abolished by 10 nM MLA. These studies suggest that NEB cells in neonatal hamster lung express functional heteromeric α3β2, α4β2, and α7 nAChR and that cholinergic mechanisms could modulate NEB chemoreceptor function under normal and pathological conditions.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

Reference51 articles.

1. Functional morphology of pulmonary neuroepithelial bodies: Extremely complex airway receptors

2. Pulmonary intraepithelial vagal nodose afferent nerve terminals are confined to neuroepithelial bodies: an anterograde tracing and confocal microscopy study in adult rats

3. Albuquerque EX, Alkondon M, Pereira EF, Castro NG, Schrattenholz A, Barbosa CT, Bonfante-Cabarcas R, Aracava Y, Aracava Y, Eisenberg HM, and Maelicke A. Properties of neuronal nicotinic acetylcholine receptors: pharmacological characterization and modulation of synaptic function. J Pharmacol Exp Ther 280: 1117-1136, 1997.

4. Evidence for Nicotinic Acetylcholine Receptors on Nasal Trigeminal Nerve Endings of the Rat

5. Nicotinic Receptor Activation in Human Cerebral Cortical Interneurons: a Mechanism for Inhibition and Disinhibition of Neuronal Networks

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3