The effects of repeated allergen challenge on airway smooth muscle structural and molecular remodeling in a rat model of allergic asthma

Author:

Labonté Isabelle1,Hassan Muhannad1,Risse Paul-André1,Tsuchiya Kimitake1,Laviolette Michel1,Lauzon Anne-Marie1,Martin James G.1

Affiliation:

1. Meakins-Christie Laboratories, Department of Medicine, McGill University, Montreal, Quebec, Canada

Abstract

The effects of remodeling of airway smooth muscle (SM) by hyperplasia on airway SM contractility in vivo are poorly explored. The aim of this study was to investigate the relationship between allergen-induced airway SM hyperplasia and its contractile phenotype. Brown Norway rats were sensitized with ovalbumin (OVA) or saline on day 0 and then either OVA-challenged once on day 14 and killed 24 h later or OVA-challenged 3 times (on days 14, 19, and 24) and killed 2 or 7 days later. Changes in SM mass, expression of total myosin, SM myosin heavy chain fast isoform (SM-B) and myosin light chain kinase (MLCK), tracheal contractions ex vivo, and airway responsiveness to methacholine (MCh) in vivo were assessed. One day after a single OVA challenge, the number of SM cells positive for PCNA was greater than for control animals, whereas the SM mass, contractile phenotype, and tracheal contractility were unchanged. Two days after three challenges, SM mass and PCNA immunoreactive cells were increased (3- and 10-fold, respectively; P < 0.05), but airway responsiveness to MCh was unaffected. Lower expression in total myosin, SM-B, and MLCK was observed at the mRNA level ( P < 0.05), and total myosin and MLCK expression were lower at the protein level ( P < 0.05) after normalization for SM mass. Normalized tracheal SM force generation was also significantly lower 2 days after repeated challenges ( P < 0.05). Seven days after repeated challenges, features of remodeling were restored toward control levels. Allergen-induced hyperplasia of SM cells was associated with a loss of contractile phenotype, which was offset by the increase in mass.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3