Regulation of endogenous ENaC functional expression by CFTR and ΔF508-CFTR in airway epithelial cells

Author:

Rubenstein Ronald C.12,Lockwood Shannon R.1,Lide Ellen1,Bauer Rebecca1,Suaud Laurence1,Grumbach Yael1

Affiliation:

1. Division of Pulmonary Medicine and Cystic Fibrosis Center, The Children's Hospital of Philadelphia; and

2. Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania

Abstract

The functional expression of the epithelial sodium channel (ENaC) appears elevated in cystic fibrosis (CF) airway epithelia, but the mechanism by which this occurs is not clear. We tested the hypothesis that the cystic fibrosis transmembrane conductance regulator (CFTR) alters the trafficking of endogenously expressed human ENaC in the CFBE41omodel of CF bronchial epithelia. Functional expression of ENaC, as defined by amiloride-inhibited short-circuit current ( Isc) in Ussing chambers, was absent under control conditions but present in CFBE41oparental and ΔF508-CFTR-overexpressing cells after treatment with 1 μM dexamethasone (Dex) for 24 h. The effect of Dex was mimicked by incubation with the glucocorticoid hydrocortisone but not with the mineralocorticoid aldosterone. Application of trypsin to the apical surface to activate uncleaved, “near-silent” ENaC caused an additional increase in amiloride-sensitive Iscin the Dex-treated cells and was without effect in the control cells, suggesting that Dex increased ENaC cell surface expression. In contrast, Dex treatment did not stimulate amiloride-sensitive Iscin CFBE41ocells that stably express wild-type (wt) CFTR. CFBE41owt cells also had reduced expression of α- and γ-ENaC compared with parental and ΔF508-CFTR-overexpressing cells. Furthermore, application of trypsin to the apical surface of Dex-treated CFBE41owt cells did not stimulate amiloride-sensitive Isc, suggesting that ENaC remained absent from the surface of these cells even after Dex treatment. We also tested the effect of trafficking-corrected ΔF508-CFTR on ENaC functional expression. Incubation with 1 mM 4-phenylbutyrate synergistically increased Dex-induced ENaC functional expression in ΔF508-CFTR-overexpressing cells. These data support the hypothesis that wt CFTR can regulate the whole cell, functional, and surface expression of endogenous ENaC in airway epithelial cells and that absence of this regulation may foster ENaC hyperactivity in CF airway epithelia.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3