Acute lung injury and lung transplantation influence in vitro subtype conversion of pulmonary surfactant

Author:

Maitra Gayatri1,Inchley Kevin1,Novick Richard J.2,Veldhuizen Ruud A. W.3,Lewis James F.3,Possmayer Fred1

Affiliation:

1. Medical Research Council Group in Fetal and Neonatal Health and Development, Departments of Biochemistry and Obstetrics and Gynaecology, University of Western Ontario, London N6A 5A5;

2. Transplant-Immunology Group, Robarts Research Institute, and Division of Cardiovascular-Thoracic Surgery, London Health Sciences Centre-University Campus, London N6A 5A5; and

3. Division of Respiratory Medicine, Department of Physiology, and Lawson Health Research Institute, St. Joseph's Health Centre, London, Ontario, Canada N6A 4V2

Abstract

The effects of surfactant treatment on surfactant subtype conversion after lung injury were examined. Dogs were subjected to hyperventilation for 8 h with or without surfactant treatment. Lungs were stored for 17 h, and the right lung was transplanted and reperfused for 6 h. Conversion of large aggregate (LA) surfactant to small aggregates was investigated using in vitro surface area cycling. LA from transplanted lungs (Transplant-LA) from the nontreated group converted more rapidly than Transplant-LA from the treated group. Transplant-LA from both groups converted more rapidly than LA from normal lungs. Calculations based on [3H]dipalmitoylphosphatidylcholine in the administered surfactant [bovine lipid extract surfactant (BLES)] showed that the endogenous component of Transplant-LA converted more rapidly than the exogenous component. This indicates exogenous BLES did not equilibrate completely with endogenous surfactant. LA from hyperventilated, stored donor right lungs and from the recipients' native lungs from the nontreated group converted more rapidly than corresponding LA in the BLES-treated group. Similar relative conversions were observed with exogenous components from all lungs. Relative conversion of endogenous component from Transplant-LA was more rapid than that from LA from donor's stored right lung or from the recipient's native right lung. Low levels of phenylmethylsulfonyl fluoride inhibited conversion of Transplant-LA to a greater extent than normal LA. LA from all experimental groups had similar protein levels. These studies show acute lung injury, transplant, ischemia-reperfusion, and surfactant treatment have major effects on surfactant subtype integrity.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3