Vitamin D deficiency downregulates TASK-1 channels and induces pulmonary vascular dysfunction

Author:

Callejo Maria123,Mondejar-Parreño Gema123,Morales-Cano Daniel123,Barreira Bianca123,Esquivel-Ruiz Sergio123,Olivencia Miguel Angel123,Manaud Grégoire4,Perros Frédéric4,Duarte Juan56,Moreno Laura123ORCID,Cogolludo Angel123,Perez-Vizcaíno Francisco123

Affiliation:

1. Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain

2. CIBER Enfermedades Respiratorias, Madrid, Spain

3. Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain

4. Université Paris–Saclay, AP-HP, INSERM UMR_S 999, Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital de Bicêtre, Le Kremlin Bicêtre, France

5. Department of Pharmacology, School of Pharmacy, Universidad de Granada, Granada, Spain

6. Ciber Enfermedades Cardiovasculares, Madrid, Spain

Abstract

Vitamin D (VitD) receptor regulates the expression of several genes involved in signaling pathways affected in pulmonary hypertension (PH). VitD deficiency is highly prevalent in PH, and low levels are associated with poor prognosis. We investigated if VitD deficiency may predispose to or exacerbate PH. Male Wistar rats were fed with a standard or a VitD-free diet for 5 wk. Next, rats were further divided into controls or PH, which was induced by a single dose of Su-5416 (20 mg/kg) and exposure to hypoxia (10% O2) for 2 wk. VitD deficiency had no effect on pulmonary pressure in normoxic rats, indicating that, by itself, it does not trigger PH. However, it induced several moderate but significant changes characteristic of PH in the pulmonary arteries, such as increased muscularization, endothelial dysfunction, increased survivin, and reduced bone morphogenetic protein ( Bmp) 4, Bmp6, DNA damage-inducible transcript 4, and K+ two - pore domain channel subfamily K member 3 ( Kcnk3) expression. Myocytes isolated from pulmonary arteries from VitD-deficient rats had a reduced whole voltage-dependent potassium current density and acid-sensitive (TASK-like) potassium currents. In rats with PH induced by Su-5416 plus hypoxia, VitD-free diet induced a modest increase in pulmonary pressure, worsened endothelial function, increased the hyperreactivity to serotonin, arterial muscularization, decreased total and TASK-1 potassium currents, and further depolarized the pulmonary artery smooth muscle cell membrane. In human pulmonary artery smooth muscle cells from controls and patients with PH, the active form of VitD calcitriol significantly increased KCNK3 mRNA expression. Altogether, these data strongly suggest that the deficit in VitD induces pulmonary vascular dysfunction.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3