Affiliation:
1. Division of Pulmonary and Critical Care Medicine,
2. Divison of Cardiothoracic Surgery, Evanston Northwestern Healthcare, Evanston, Illinois 60202
3. Belfer Gene Therapy Core Facility, and
4. Institute of Genetic Medicine, Weill Medical College of Cornell University, New York, New York 10021; and
Abstract
In the adult rodent, pneumonectomy results in compensatory lung growth characterized by cell proliferation. The molecular mechanisms governing this response remain unknown. We hypothesized that, in the early period postpneumonectomy, upregulated expression of transcription factors drives the growth process. We utilized a cDNA expression array to screen for upregulated transcription factors after left pneumonectomy in adult C57BL/6 mice, using unoperated mice as controls. Quantification of mRNA expression in the remaining lung at 2 h demonstrated a twofold or greater upregulation of six transcription factors: early growth response gene-1 (Egr-1), Nurr77, tristetraprolin, the primary inhibitor of nuclear factor-κB (IκB-α), gut-enriched Krüppel-like factor (GKLF), and LRG-21. Northern analysis was used to quantify the upregulation of expression of these genes relative to sham thoracotomy and unoperated controls. The largest increase was in Egr-1 (4.7-fold > naive). Time-course analysis over the first 24 h confirmed the transient nature of the early upregulation. In the context that postpneumonectomy lung growth is associated with cell proliferation and that genes such as Egr-1, Nurr77, LRG-21, and tristetraprolin have known roles in stress response, vascular biology, embryology, and cellular development, these data support the concept that transcription factors function early in the cascade of events leading to the compensatory response.
Publisher
American Physiological Society
Subject
Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献