Inhaled carbon monoxide and hyperoxic lung injury in rats

Author:

Clayton Carolyn E.1,Carraway Martha Sue1,Suliman Hagir B.12,Thalmann Edward D.2,Thalmann Katherine N.2,Schmechel Donald E.3,Piantadosi Claude A.12

Affiliation:

1. Divisions of Pulmonary Medicine and

2. Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina 27710

3. Neurology, Department of Medicine, and

Abstract

Because carbon monoxide (CO) has been proposed to have anti-inflammatory properties, we sought protective effects of CO in pulmonary O2 toxicity, which leads rapidly to lung inflammation and respiratory failure. Based on published studies, we hypothesized that CO protects the lung against O2 by selectively increasing expression of antioxidant enzymes, thereby decreasing oxidative injury and inflammation. Rats exposed to O2 with or without CO [50–500 parts/million (ppm)] for 60 h were compared for lung wet-to-dry weight ratio (W/D), pleural fluid volume, myeloperoxidase (MPO) activity, histology, expression of heme oxygenase-1 (HO-1), and manganese superoxide dismutase (Mn SOD) proteins. The brains were evaluated for histological evidence of damage from CO. In O2-exposed animals, lung W/D increased from 4.8 in normal rats to 6.3; however, only CO at 200 and 500 ppm decreased W/D significantly (to 5.9) during O2 exposure. Large volumes of pleural fluid accumulated in all rats, with no significant CO treatment effect. Lung MPO values increased after O2 and were not attenuated by CO treatment. CO did not enhance lung expression of oxidant-responsive proteins Mn SOD and HO-1. Animals receiving O2 and CO at 200 or 500 ppm showed significant apoptotic cell death in the cortex and hippocampus by immunochemical staining. Thus significant protection by CO against O2-induced lung injury could not be confirmed in rats, even at CO concentrations associated with apoptosis in the brain.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3