Anti-neutrophil chemokine preserves alveolar development in hyperoxia-exposed newborn rats

Author:

Auten Richard L.12,Mason S. Nicholas1,Tanaka David T.1,Welty-Wolf Karen3,Whorton Mary H.12

Affiliation:

1. Division of Neonatal Medicine, Department of Pediatrics, Neonatal-Perinatal Research Institute, and

2. Comprehensive Center for Inflammatory Disorders, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599

3. Division of Pulmonary and Critical Care Medicine, Department of Medicine, Duke University Medical Center, Durham 27710; and

Abstract

Inflammation may contribute to lung injury and impaired alveolar development in bronchopulmonary dysplasia. We treated hyperoxia-exposed newborn rats with antibodies to the neutrophil chemokine cytokine-induced neutrophil chemoattractant-1 (CINC-1) during 95% O2exposure to reduce adverse effects of hyperoxia-induced inflammation on lung development. Rats were exposed at birth to air, 95% O2, or 95% O2+ anti-CINC-1 (injected on days 3 and 4). Bromodeoxyuridine (BrdU) was injected 6 h before death. Anti-CINC-1 treatment improved weight gain but not survival at day 8. Anti-CINC-1 reduced bronchoalveolar lavage neutrophils at day 8 to levels equal to air controls. Total detectable lung CINC-1 was reduced to air control levels. Lung compliance was improved by anti-CINC-1, achieving air control levels in the 10-μg anti-CINC-1 group. Anti-CINC-1 preserved proliferating cell nuclear antigen expression in airway epithelium despite 95% O2exposure. BrdU incorporation was depressed by hyperoxia but preserved by anti-CINC-1 to levels similar to air control. Alveolar volume and surface density were decreased by hyperoxia but preserved by anti-CINC-1 to levels equal to air control. Blockade of neutrophil influx in newborns may avert early lung injury and avoid alveolar developmental arrest that contributes to bronchopulmonary dysplasia.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

Cited by 81 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3