Signal transduction pathways of IL-1β-mediated iNOS in pulmonary vascular smooth muscle cells

Author:

Finder Jonathan D.1,Petrus Jennifer L.1,Hamilton Andrew2,Villavicencio Raphael T.3,Pitt Bruce R.4,Sebti Saïd M.5

Affiliation:

1. Departments of Pediatrics,

2. Department of Chemistry, Yale University, New Haven, Connecticut 06520

3. Surgery, and

4. Environmental and Occupational Health, University of Pittsburgh School of Medicine and Graduate School of Public Health, Pittsburgh, Pennsylvania 15261;

5. Drug Discovery Program, H. Lee Moffitt Cancer Center, Department of Biochemistry and Molecular Biology, University of South Florida, Tampa, Florida 33612; and

Abstract

Interleukin (IL)-1β is an important early mediator of inflammation in pulmonary artery smooth muscle cells. We previously reported that a geranylgeranyltransferase inhibitor elevated basal levels of inducible nitric oxide synthase (iNOS) and enhanced IL-1β-mediated induction, suggesting that Rac or Rho small G proteins are candidates for antagonism of such induction. In this study, overexpression of constitutively active Rac1 or its dominant negative mutant did not affect IL-1β induction of iNOS. Alternatively, treatment with Clostridium botulinum C3 exoenzyme, which ADP-ribosylates Rho, was associated with superinduction of iNOS, suggesting an inhibitory role for Rho. IL-1β activated the three mitogen-activated protein kinase (extracellular signal-regulated kinases 1 and 2, c-Jun NH2-terminal kinase/stress-activated protein kinase, and p38) and the Janus kinase (JAK)-signal transducer and activator of transcription pathways. The former two pathways were not associated with IL-1β-mediated iNOS induction, whereas the latter two appeared to have inhibitory roles in iNOS expression. These data suggest that a broad intracellular signaling response to IL-1β in rat pulmonary artery smooth muscle cells results in elevated levels of iNOS that is opposed by the geranylgeranylated small G protein Rho as well as the p38 and JAK2 pathways.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3