Molecular basis of hypoxia-induced pulmonary vasoconstriction: role of voltage-gated K+ channels

Author:

Coppock Elizabeth A.1,Martens Jeffrey R.1,Tamkun Michael M.1

Affiliation:

1. Departments of Physiology and Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523

Abstract

The hypoxia-induced membrane depolarization and subsequent constriction of small resistance pulmonary arteries occurs, in part, via inhibition of vascular smooth muscle cell voltage-gated K+(KV) channels open at the resting membrane potential. Pulmonary arterial smooth muscle cell KV channel expression, antibody-based dissection of the pulmonary arterial smooth muscle cell K+ current, and the O2 sensitivity of cloned KV channels expressed in heterologous expression systems have all been examined to identify the molecular components of the pulmonary arterial O2-sensitive KV current. Likely components include Kv2.1/Kv9.3 and Kv1.2/Kv1.5 heteromeric channels and the Kv3.1b α-subunit. Although the mechanism of KV channel inhibition by hypoxia is unknown, it appears that KV α-subunits do not sense O2 directly. Rather, they are most likely inhibited through interaction with an unidentified O2 sensor and/or β-subunit. This review summarizes the role of KV channels in hypoxic pulmonary vasoconstriction, the recent progress toward the identification of KV channel subunits involved in this response, and the possible mechanisms of KV channel regulation by hypoxia.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3