Reduced endothelial nitric oxide synthase in lungs of chronically ventilated preterm lambs

Author:

MacRitchie Amy N.1,Albertine Kurt H.1,Sun Jiancheng1,Lei Paul S.1,Jensen Suzanne C.1,Freestone Allen A.1,Clair Philip M.1,Dahl Mar Janna1,Godfrey Emily A.1,Carlton David P.1,Bland Richard D.1

Affiliation:

1. Department of Pediatrics, University of Utah, Salt Lake City, Utah 84132

Abstract

Nitric oxide (NO), produced in lung vascular endothelium and airway epithelium, has an important role in regulating smooth muscle cell growth and tone. Chronic lung disease, a frequent complication of premature birth, is characterized by excess abundance, tone, and reactivity of smooth muscle in the pulmonary circulation and conducting airways, leading to increased lung vascular and airway resistance. Whether these structural and functional changes are associated with diminished pulmonary expression of endothelial nitric oxide synthase (eNOS) protein is unknown. Both quantitative immunoblot analysis and semiquantitative immunohistochemistry showed that there was less eNOS protein in the endothelium of small intrapulmonary arteries and epithelium of small airways of preterm lambs that were mechanically ventilated for 3 wk compared with control lambs born at term. No significant differences were detected for other proteins (inducible NOS, α-smooth muscle actin, and pancytokeratin). Lung vascular and respiratory tract resistances were greater in the chronically ventilated preterm lambs compared with control term lambs. These results support the notion that decreased eNOS in the pulmonary circulation and respiratory tract of preterm lambs may contribute to the pathophysiology of chronic lung disease.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

Cited by 86 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3