Role of cell surface glycosylation in mediating repair of human airway epithelial cell monolayers

Author:

Dorscheid Delbert R.1,Wojcik Kimberly R.2,Yule Kelly2,White Steven R.2

Affiliation:

1. McDonald Research Laboratory, University of British Columbia, Vancouver, British Columbia V6Z 1Y6, Canada; and

2. Section of Pulmonary and Critical Care Medicine, Department of Medicine, Division of Biological Sciences, University of Chicago, Chicago, Illinois 60637

Abstract

Our laboratory recently demonstrated the pattern of cell surface glycosylation of nonsecretory central airway epithelium (Dorscheid DR, Conforti AE, Hamann KJ, Rabe KF, and White SR. Histochem J 31: 145–151, 1999), but the role of glycosylation in airway epithelial cell migration and repair is unknown. We examined the functional role of cell surface carbohydrates in wound repair after mechanical injury of 1HAEo human airway epithelial and primary bronchial epithelial monolayers. Wound repair stimulated by epidermal growth factor was substantially attenuated by 10−7 M tunicamycin (TM), an N-glycosylation inhibitor, but not by the inhibitors deoxymannojirimycin or castanospermine. Wound repair of 1HAEo and primary airway epithelial cells was blocked completely by removal of cell surface terminal fucose residues by α-fucosidase. Cell adhesion to collagen matrix was prevented by TM but was only reduced ∼20% from control values with prior α-fucosidase treatment. Cell migration in Blind Well chambers stimulated by epidermal growth factor was blocked by pretreatment with TM but α-fucosidase pretreatment produced no difference from control values. These data suggest that cell surface N-glycosylation has a functional role in airway epithelial cell adhesion and migration and that N-glycosylation with terminal fucosylation plays a role in the complex process of repair by coordination of certain cell-cell functions.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3