Differential regulation of diverse physiological responses to VEGF in pulmonary endothelial cells

Author:

Becker Patrice M.1,Verin Alexander D.1,Booth Mary Ann1,Liu Feng1,Birukova Anna1,Garcia Joe G. N.1

Affiliation:

1. Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21224-6801

Abstract

The mechanisms responsible for the divergent physiological responses of endothelial cells to vascular endothelial growth factor (VEGF) are incompletely understood. We hypothesized that VEGF elicits increased endothelial permeability and cell migration via differential activation of intracellular signal transduction pathways. To test this hypothesis, we established a model of VEGF-induced endothelial barrier dysfunction and chemotaxis with bovine pulmonary endothelial cells. We compared the effects of VEGF on transendothelial electrical resistance (TER), actin cytoskeletal remodeling, and chemotaxis of lung endothelial cells and then evaluated the role of the mitogen-activated protein kinases (MAPKs) p38 and extracellular signal-regulated kinase (ERK)1/2 in VEGF-mediated endothelial responses. The dose response of pulmonary arterial and lung microvascular endothelial cells to VEGF differed when barrier regulation and chemotaxis were evaluated. Inhibition of tyrosine kinase, phosphoinositol 3-kinase, or p38 MAPK significantly attenuated VEGF-mediated TER, F-actin remodeling, and chemotaxis. VEGF-mediated decreased TER was also significantly attenuated by inhibition of ERK1/2 MAPK but not by inhibition of fetal liver kinase-1 (flk-1) or Src kinase. In contrast, VEGF-mediated endothelial migration was not attenuated by ERK1/2 inhibition but was abolished by inhibition of either flk-1 or Src kinase. These data suggest potential mechanisms by which VEGF may differentially mediate physiological responses in vivo.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3