An immediate endothelial cell signaling response to lung ischemia

Author:

Song Chun1,Al-Mehdi Abu B.1,Fisher Aron B.1

Affiliation:

1. Institute for Environmental Medicine, University of Pennsylvania Medical Center, Philadelphia, Pennsylvania 19104

Abstract

Abrupt cessation of lung perfusion induces a rapid endothelial response that is not associated with anoxia but reflects loss of normal shear stress. This response includes membrane depolarization, H2O2generation, and increased intracellular Ca2+. We evaluated these parameters immediately upon nonhypoxic ischemia using fluorescence videomicroscopy to image in situ endothelial cells in isolated, ventilated rat lungs. Lungs labeled with 4-{2-[6-(dioctylamino)-2-naphthalenyl]ethenyl}1-(3-sulfopropyl)-pyridinium (di-8-ANEPPS; a membrane potential probe), Amplex Red (an extracellular H2O2probe), or fluo 3-AM (a Ca2+indicator) were subjected to control perfusion followed by global ischemia. Endothelial di-8-ANEPPS fluorescence increased significantly within the first second of ischemia and stabilized at 15 s, indicating membrane depolarization by ∼17 mV; depolarization was blocked by preperfusion with the K+channel agonist lemakalim. Increased H2O2, inhibitable by catalase, was detected in the vascular space at 1–2 s after the onset of ischemia. Increased intracellular Ca2+was detected 10–15 s after the onset of ischemia; the initial increase was inhibited by preperfusion with thapsigargin. Thus the temporal sequence of the initial response of endothelial cells in situ to loss of shear stress (i.e., ischemia) is as follows: membrane depolarization, H2O2release, and increased intracellular Ca2+.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3