Regulation of cGMP-dependent protein kinase-mediated vasodilation by hypoxia-induced reactive species in ovine fetal pulmonary veins

Author:

Negash Sewite,Gao Yuansheng,Zhou Weilin,Liu Jie,Chinta Shashi,Raj J. Usha

Abstract

We previously reported that hypoxia attenuates cGMP-dependent protein kinase (PKG)-mediated relaxation in pulmonary vessels ( Am J Physiol Lung Cell Mol Physiol 279: L611–L618, 2003). To determine whether hypoxia-induced reactive oxygen and nitrogen species (ROS and RNS, respectively) may be involved in the downregulation of PKG-mediated relaxation, ovine fetal intrapulmonary veins were exposed to 4 h of normoxia or hypoxia, with or without scavengers of ROS [ N-acetylcysteine (NAC)] or peroxynitrite (quercetin and Trolox) and preconstricted with endothelin-1. Hypoxia decreased the relaxation response to 8-bromo-cGMP, PKG protein expression, and kinase activity and increased tyrosine nitration in PKG. However, ROS and RNS scavengers prevented these changes. To determine whether increased PKG nitration diminishes PKG activity, pulmonary vein smooth muscle cells (PVSMC) were exposed to shorter-term (30 min) hypoxia, which increased PKG nitration and decreased PKG activity but did not alter PKG protein expression. Increased dihydro-2,7-dichlorofluorescein diacetate (DCFH2-DA) fluorescence in PVSMC after 4 h or 30 min of hypoxia was not observed in the presence of NAC, quercetin, or Trolox, suggesting increased ROS and RNS production. Increased PKG nitration and the associated decrease in PKG activity in PVSMC after 30 min of hypoxia were also reversed on reoxygenation. The consequences of PKG nitration were assessed by exposure of purified PKG-Iα to peroxynitrite, which caused increased 3-nitrotyrosine immunoreactivity and inhibition of kinase activity. Our data suggest that, after 30 min of hypoxia, reversible covalent modification of PKG by hypoxia-induced reactive species may be an important mechanism by which the relaxation response to cGMP is regulated. However, after 4 h of hypoxia, PKG nitration and decreased PKG expression are involved.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3