Affiliation:
1. Harborview Medical Center and
2. University of Washington, Seattle, Washington
Abstract
Pseudomonas aeruginosa is a leading cause of hospital-acquired pneumonia and an important pathogen in patients with chronic lung disease, such as cystic fibrosis and bronchiectasis. The contribution of Toll-like receptor 5 (TLR5) to the innate immune response to this organism is incompletely understood. We exposed wild-type and TLR5-deficient ( Tlr5−/−) mice to aerosolized P. aeruginosa at low and high inocula and assessed bacterial clearance, lung inflammation, and cytokine production 4 and 24 h after infection. Bacterial clearance was impaired in Tlr5−/−mice after low-inoculum, but not high-inoculum, infection. Early bronchoalveolar accumulation of neutrophils was reduced in Tlr5−/−mice after low- and high-dose infection. Cytokine responses, including markedly impaired monocyte chemoattractant protein-1 production 4 h after low- and high-inoculum challenge, were selectively altered in Tlr5−/−mice. In contrast, there was no impairment of bacterial clearance, neutrophil recruitment, or monocyte chemoattractant protein-1 production in Tlr5−/−mice after infection with a nonflagellated isotypic strain of P. aeruginosa . Thus TLR5-mediated recognition of flagellin is involved in activating pulmonary defenses against P. aeruginosa and contributes to antibacterial resistance in a manner that is partially inoculum dependent. These data are the first to demonstrate a unique role for TLR5 in the innate immune response to P. aeruginosa lung infection.
Publisher
American Physiological Society
Subject
Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology
Cited by
61 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献