Pulmonary vascular effects of serotonin and selective serotonin reuptake inhibitors in the late-gestation ovine fetus

Author:

Delaney Cassidy12,Gien Jason12,Grover Theresa R.12,Roe Gates1,Abman Steven H.13

Affiliation:

1. Pediatric Heart Lung Center,

2. Sections of 2Neonatology and

3. Pulmonary Medicine, Department of Pediatrics, University of Colorado School of Medicine and The Children's Hospital, Aurora, Colorado

Abstract

Maternal use of selective serotonin (5-HT) reuptake inhibitors (SSRIs) is associated with an increased risk for persistent pulmonary hypertension of the newborn (PPHN), but little is known about 5-HT signaling in the developing lung. We hypothesize that 5-HT plays a key role in maintaining high pulmonary vascular resistance (PVR) in the fetus and that fetal exposure to SSRIs increases 5-HT activity and causes pulmonary hypertension. We studied the hemodynamic effects of 5-HT, 5-HT receptor antagonists, and SSRIs in chronically prepared fetal sheep. Brief infusions of 5-HT (3–20 μg) increased PVR in a dose-related fashion. Ketanserin, a 5-HT 2A receptor antagonist, caused pulmonary vasodilation and inhibited 5-HT-induced pulmonary vasoconstriction. In contrast, intrapulmonary infusions of GR127945 and SB206553, 5-HT 1B and 5-HT 2B receptor antagonists, respectively, had no effect on basal PVR or 5-HT-induced vasoconstriction. Pretreatment with fasudil, a Rho kinase inhibitor, blunted the effects of 5-HT infusion. Brief infusions of the SSRIs, sertraline and fluoxetine, caused potent and sustained elevations of PVR, which was sustained for over 60 min after the infusion. SSRI-induced pulmonary vasoconstriction was reversed by infusion of ketanserin and did not affect the acute vasodilator effects of acetylcholine. We conclude that 5-HT causes pulmonary vasoconstriction, contributes to maintenance of high PVR in the normal fetus through stimulation of 5-HT 2A receptors and Rho kinase activation, and mediates the hypertensive effects of SSRIs. We speculate that prolonged exposure to SSRIs can induce PPHN through direct effects on the fetal pulmonary circulation.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3