Role of nitric oxide synthase/arginase balance in bronchial reactivity in patients with chronic obstructive pulmonary disease

Author:

Tadié Jean-Marc,Henno Priscilla,Leroy Ingrid,Danel Claire,Naline Emmanuel,Faisy Christophe,Riquet Marc,Levy Marilyne,Israël-Biet Dominique,Delclaux Christophe

Abstract

Competition between nitric oxide synthases (NOSs) and arginases for their common substrate l-arginine could be involved in the regulation of cholinergic airway reactivity and subsequent airway remodeling. The aims of this study were to evaluate the relationships between the expression of this enzymatic balance and the effects of NOS and arginase inhibition on bronchoconstrictive response to acetylcholine of patients without and with early chronic obstructive pulmonary disease (COPD). Twenty-two human bronchi [15 COPD (9 GOLD-0, 6 GOLD-1, -2-A), 7 nonsmokers] were investigated for immunohistochemistry and modulation of acetylcholine-induced airway constriction. Significantly increased expression of NOS2 in immunoblots of bronchial tissue and staining in smooth muscle cells was evidenced in patients with COPD compared with control subjects, whereas no modification of arginase expression was evidenced. Forced expiratory volume in 1 s (FEV1) and NOS2 expression were negatively correlated (ρ = −0.54, P = 0.027). Pharmacological experiments demonstrated that resting tension was elevated in COPD compared with control subjects (2,243 ± 154 vs. 1,574 ± 218 mg, P = 0.03) and was positively correlated with the expression of NOS2 (ρ = 0.61, P = 0.044), whereas constrictor response to acetylcholine was similar [active tension, sensitivity (−logEC10), and reactivity (slope)]. The sole effect of the specific arginase inhibitor Nω-hydroxy-nor-l-arginine (1 μM) was to decrease sensitivity in COPD patients, whereas 1 mM NG-nitro-l-arginine methyl ester unexpectedly decreased resting tension because of a non-cGMP-dependent effect. In conclusion, an upregulation of NOS2 expression in COPD patients is involved in airway tone regulation and functional airflow limitation, whereas increased arginase activity is involved in airway sensitivity.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3