Affiliation:
1. Egleston Pediatric Subspecialists, Egleston Children’s Health System, and Divisions of
2. Critical Care and
3. Neonatology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322
Abstract
Enhancing the clearance of neutrophils by enhancing apoptotic cell death and macrophage recognition may be beneficial in acute lung injury. Exogenous nitric oxide gas depresses neutrophil oxidative functions and accelerates cell death (A. H. Daher, J. D. Fortenberry, M. L. Owens, and L. A. Brown. Am. J. Respir. Cell Mol. Biol. 16: 407–412, 1997). We hypothesized that S-nitrosoglutathione (GSNO), a physiologically relevant nitric oxide donor, could also enhance neutrophil DNA fragmentation. Neutrophils were incubated for 2–24 h in the absence and presence of GSNO (dose range 0.1–5 mM) and evaluated for cell death by a fluorescent viability/cytotoxicity assay. Neutrophil DNA fragmentation was assessed by cell death detection ELISA and by terminal deoxynucleotidyltransferase-mediated fluorescence-labeled dUTP nick end labeling assay. Neutrophil oxidative function was also determined. Incubation with GSNO increased cell death at 2, 4, and 24 h. GSNO incubation for 24 h significantly increased DNA fragmentation in a dose-dependent fashion at 0.5 (median 126% of control value; P = 0.002) and 5 mM (185% of control value; P = 0.002) by terminal deoxynucleotidyltransferase-mediated fluorescence-labeled dUTP nick end labeling and at 0.5 mM by ELISA (164% of control value; P = 0.03). The apoptosis-to-total cell death ratio increased with increasing GSNO concentration ( P < 0.05). Effects were mitigated by coincubation with superoxide dismutase. Five millimolar GSNO decreased overall superoxide generation and O2consumption but not when adjusted for dead neutrophils. GSNO significantly enhances cell death and neutrophil DNA fragmentation in a dose-dependent fashion.
Publisher
American Physiological Society
Subject
Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology
Cited by
36 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献