Ischemia-reperfusion lung injury in rabbits: mechanisms of injury and protection

Author:

Sakuma Tsutomu1,Takahashi Keiji1,Ohya Nobuo1,Kajikawa Osamu1,Martin Thomas R.1,Albertine Kurt H.1,Matthay Michael A.1,

Affiliation:

1. Department of Respiratory Medicine, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan; Cardiovascular Research Institute, University of California, San Francisco, California 93143; Department of Veterans Affairs Medical Center, Seattle, Washington 98108; and Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah 84132

Abstract

To study the mechanisms responsible for ischemia-reperfusion lung injury, we developed an anesthetized rabbit model in which the effects of lung deflation, lung inflation, alveolar gas composition, hypothermia, and neutrophils on reperfusion pulmonary edema could be studied. Rabbits were anesthetized and ventilated, and the left pulmonary hilum was clamped for either 2 or 4 h. Next, the left lung was reperfused and ventilated with 100% oxygen. As indexes of lung injury, we measured arterial oxygenation, extravascular lung water, and the influx of a vascular protein (131I-labeled albumin) into the extravascular space of the lungs. The principal results were that 1) all rabbits with the deflation of the lung during ischemia for 4 h died of fulminant pulmonary edema within 1 h of reperfusion; 2) inflation of the ischemic lung with either 100% oxygen, air, or 100% nitrogen prevented the reperfusion lung injury; 3) hypothermia at 6–8°C also prevented the reperfusion lung injury; 4) although circulating neutrophils declined during reperfusion lung injury, there was no increase in interleukin-8 levels in the plasma or the pulmonary edema fluid, and, furthermore, neutrophil depletion did not prevent the reperfusion injury; and 5) ultrastructural studies demonstrated injury to both the lung endothelium and the alveolar epithelium after reperfusion in deflated lungs, whereas the inflated lungs had no detectable injury. In summary, ischemia-reperfusion injury to the rabbit lung can be prevented by either hypothermia or lung inflation with either air, oxygen, or nitrogen.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3